Apariencia
Guía de Agentes Especializados
Navegación Rápida
Usa esta guía para identificar el agente correcto para cada tarea. Todos los agentes están optimizados para ejecutarse de forma paralela cuando sea posible.
Extensa biblioteca de agentes especializados organizados por dominio y frecuencia de uso
Resumen Ejecutivo
Categoría | Agentes | Uso Recomendado |
---|---|---|
Architecture & System Design | 8 | Diseño de APIs, arquitectura de sistemas, multi-cloud |
Code Review & Security | 5 | Revisión de código, seguridad, edge cases |
Database Management | 2 | Optimización de BD, administración cloud |
DevOps & Deployment | 4 | CI/CD, GitOps, troubleshooting, DX |
Documentation & Technical Writing | 5 | Documentación técnica, APIs, tutoriales |
Incident Response & Network | 2 | Respuesta a incidentes, ingeniería de redes |
Performance & Observability | 3 | Optimización de rendimiento, observabilidad |
Shadcn-UI Components | 4 | Componentes UI con shadcn/ui |
Testing & Debugging | 4 | TDD, testing automatizado, debugging sistemático |
User Experience & Design | 3 | UX premium, animaciones GSAP, design review |
Web & Application | 5 | TypeScript, Python, JavaScript, PHP, Ruby |
Invocación de Agentes
Los agentes pueden ser invocados automáticamente por Claude o explícitamente por el usuario según las necesidades del workflow.
Métodos de Invocación
1. Invocación Automática (Claude decide):
bash
"Analiza la arquitectura de este sistema backend"
# Claude automáticamente usa backend-architect si es apropiado
2. Invocación Explícita (usuario especifica):
bash
"Use the backend-architect agent to design this API"
# Garantiza uso del agent específico
3. Task Tool (para ejecución paralela):
bash
# En tu prompt:
"Launch code-quality-reviewer and security-reviewer agents in parallel
using Task tool to review current changes"
Sintaxis con Task Tool
El Task tool permite ejecutar agents de forma explícita y controlada:
typescript
// Sintaxis conceptual
Task({
description: "Review code quality",
prompt: "Analyze changes in current branch vs develop. Return findings.",
subagent_type: "code-quality-reviewer",
});
Ejemplo práctico:
bash
"I need you to execute two tasks in parallel:
1. Use Task tool with subagent_type='code-quality-reviewer'
to review code quality in src/api/
2. Use Task tool with subagent_type='security-reviewer'
to check for security vulnerabilities
Report combined findings when both complete"
Ejecución en Paralelo
Para máxima eficiencia, ejecuta agents independientes simultáneamente:
Patrón recomendado:
bash
# PR Review completo en paralelo
"Launch in parallel:
- code-quality-reviewer for code standards
- security-reviewer for vulnerabilities
- performance-engineer for optimization opportunities
Combine all findings in single report"
Beneficios:
- ⚡ Reducción de tiempo de ejecución
- 🧠 Context windows independientes por agent
- 🎯 Análisis especializado sin interferencia
- 📊 Reports consolidados al final
Best Practices
Cuándo Usar Cada Método
Invocación Automática - Usar cuando:
- Task es estándar y obvio
- Confías en la orquestación de Claude
- No necesitas paralelización
Invocación Explícita - Usar cuando:
- Necesitas garantizar agent específico
- Workflow requiere paralelización
- Task requiere context window separado
- Múltiples agents deben trabajar independientemente
Regla General: Deja que Claude orqueste (automático) a menos que necesites control preciso (explícito) o paralelización (Task tool).
Agentes Disponibles
Todos los agents listados en las secciones siguientes pueden ser invocados usando cualquiera de los métodos anteriores. Consulta la categoría específica para detalles de cada agent.
Architecture & System Design
backend-architect
Diseño de APIs RESTful, límites de microservicios, esquemas de base de datos. Revisa arquitectura para escalabilidad y cuellos de botella de rendimiento.
Uso Proactivo
Cuándo usar: Al crear nuevos servicios backend o APIs.
Áreas de enfoque:
- Diseño de API RESTful con versionado y manejo de errores adecuado
- Definición de límites de servicio y comunicación entre servicios
- Diseño de esquema de base de datos (normalización, índices, sharding)
- Estrategias de caché y optimización de rendimiento
- Patrones básicos de seguridad (autenticación, rate limiting)
Salida:
- Definiciones de endpoints API con ejemplos de request/response
- Diagrama de arquitectura de servicios (mermaid o ASCII)
- Esquema de base de datos con relaciones clave
- Recomendaciones de tecnología con justificación breve
- Cuellos de botella potenciales y consideraciones de escalamiento
frontend-developer
Construye componentes React, layouts responsivos, gestión de estado client-side. Domina React 19, Next.js 15 y arquitectura frontend moderna.
Uso Proactivo
Cuándo usar: Al crear componentes UI o corregir issues frontend.
Capacidades principales:
- React 19: Actions, Server Components, concurrent rendering
- Next.js 15: App Router, RSC, Server Actions, routing avanzado
- Arquitectura moderna: Atomic design, micro-frontends, design systems
- State management: Zustand, Jotai, React Query/TanStack Query
- Testing: React Testing Library, Playwright, Cypress
- Performance: Core Web Vitals, code splitting, image optimization
Enfoque de desarrollo:
- Entender contexto y objetivos UX
- Planear arquitectura de componentes antes de implementación
- Usar patrones modernos de React/Next.js
- Considerar rendimiento (bundle size, rendering optimization)
- Incluir atributos ARIA y HTML semántico por defecto
- Proporcionar estrategia de testing y casos clave
mobile-developer
Desarrollo de apps móviles con React Native, Flutter o nativas. Domina desarrollo cross-platform, integraciones nativas, sincronización offline.
Uso Proactivo
Cuándo usar: Para features móviles, código cross-platform, o optimización de apps.
Expertise técnico:
- Cross-platform: React Native (New Architecture), Flutter 3.x, Expo SDK 50+
- Arquitectura: Clean Architecture, MVVM/MVP/MVI, feature-based structure
- Performance: Memory management, battery optimization, launch time optimization
- Device integration: Camera, GPS, push notifications, biometric auth
- Data management: Offline-first, SQLite/Realm, background sync
- App Store: Submission processes, ASO, OTA updates
Traits comportamentales:
- Platform-agnostic pero respeta convenciones de plataforma
- Prioriza UX smooth y uso eficiente de recursos
- Implementa protección de datos y comunicación segura
- Construye apps que cumplen con guidelines de app stores
cloud-architect
Experto en arquitectura cloud multi-cloud (AWS/Azure/GCP), IaC avanzado (Terraform/OpenTofu/CDK), optimización FinOps.
Uso Proactivo
Cuándo usar: Para arquitectura cloud, optimización de costos, planificación de migraciones, estrategias multi-cloud.
Expertise de plataforma:
- AWS: EC2, Lambda, EKS, RDS, S3, VPC, Well-Architected Framework
- Azure: VMs, Functions, AKS, SQL Database, Virtual Network, ARM/Bicep
- GCP: Compute Engine, Cloud Functions, GKE, Cloud SQL, Cloud Storage
- Multi-cloud: Networking cross-cloud, replicación de datos, DR
- Edge computing: CloudFlare, CloudFront, Azure CDN, arquitecturas IoT
Capacidades IaC:
- Terraform/OpenTofu: Diseño avanzado de módulos, gestión de estado
- IaC nativo: CloudFormation, ARM/Bicep, Cloud Deployment Manager
- Modern IaC: AWS CDK, Azure CDK, Pulumi (TypeScript/Python/Go)
- GitOps: Automatización de infraestructura con ArgoCD, Flux
- Policy as Code: OPA, AWS Config, Azure Policy, GCP Organization Policy
graphql-architect
Domina GraphQL moderno con federation, optimización de rendimiento y seguridad enterprise.
Uso Proactivo
Cuándo usar: Para arquitectura GraphQL o optimización de rendimiento.
Capacidades modernas:
- Federation: Apollo Federation v2, GraphQL Fusion, composite schemas
- Schema design: Schema-first, interfaces, union types, Relay spec
- Performance: DataLoader (N+1 resolution), caching multi-tier, APQ
- Security: Field-level authorization, JWT, RBAC, rate limiting
- Real-time: GraphQL subscriptions con WebSocket/SSE, live queries
hybrid-cloud-architect
Experto en soluciones híbridas complejas multi-cloud (AWS/Azure/GCP + clouds privadas como OpenStack/VMware).
Uso Proactivo
Cuándo usar: Para arquitectura híbrida, estrategia multi-cloud, o integración de infraestructura compleja.
Expertise multi-cloud:
- Public clouds: AWS, Azure, GCP con integraciones cross-cloud avanzadas
- Private clouds: OpenStack (todos los servicios core), VMware vSphere/vCloud
- Hybrid platforms: Azure Arc, AWS Outposts, Google Anthos, VMware Cloud Foundation
- Edge computing: AWS Wavelength, Azure Edge Zones, Google Distributed Cloud Edge
Expertise OpenStack profundo:
- Core services: Nova, Neutron, Cinder, Swift
- Identity & management: Keystone, Horizon, Heat
- Advanced services: Octavia, Barbican, Magnum
- High availability: Multi-node deployments, clustering, DR
- Integration: APIs cross-cloud, hybrid identity management
kubernetes-architect
Experto en infraestructura cloud-native, workflows GitOps avanzados (ArgoCD/Flux), orquestación enterprise de containers.
Uso Proactivo
Cuándo usar: Para arquitectura K8s, implementación GitOps, o diseño de plataformas cloud-native.
Expertise de plataforma:
- Managed K8s: EKS (AWS), AKS (Azure), GKE (GCP) con configuración avanzada
- Enterprise K8s: Red Hat OpenShift, Rancher, VMware Tanzu
- Self-managed: kubeadm, kops, kubespray, bare-metal, air-gapped deployments
- Multi-cluster: Cluster API, fleet management, cross-cluster networking
GitOps & Continuous Deployment:
- Tools: ArgoCD, Flux v2, Jenkins X, Tekton
- Principios OpenGitOps: Declarativo, versionado, pull automático, reconciliación continua
- Progressive delivery: Argo Rollouts, Flagger, canary deployments, blue/green, A/B testing
- Secret management: External Secrets Operator, Sealed Secrets, Vault integration
agent-strategy-advisor
Asesor estratégico para selección inteligente de agentes y planificación de trabajo. Analiza cualquier descripción de trabajo y recomienda agents óptimos con rationale detallado.
Herramienta Consultiva
Cuándo usar: Planificando trabajo complejo, aprendiendo ecosistema de agentes, o incierto qué agent usar.
Propósito:
- NO ejecuta tareas (solo analiza y recomienda)
- SÍ genera planes estratégicos consultables
- SÍ educa sobre selección de agentes
- SÍ analiza ROI realista
Input flexible:
- tasks.md, free-form text, user stories, problem statements
Output:
Strategic plan con work analysis, recomendaciones de agentes, execution strategy, educational guide, honest assessment.
Usage:
bash
/ai-framework:Task agent-strategy-advisor "Analiza mi tasks.md y recomienda agentes"
/ai-framework:Task agent-strategy-advisor "Build REST API with Python and PostgreSQL"
Anti-Overengineering:
- S ≤ 80 LOC: Main Claude suficiente
- Agent overhead = 5-10 min → Usar solo si ROI > 1.5x
Code Review & Security
code-quality-reviewer
Reviewer de calidad de código esencial enfocado en principios universales que previenen deuda técnica.
Uso Proactivo
Cuándo usar: Antes de PRs, auditorías de código, validación arquitectónica.
Dimensiones de calidad (todas igualmente críticas):
Code Structure & Architecture:
- Código simple y legible con naming descriptivo
- Single responsibility por función/clase (<50 líneas)
- No código duplicado (principio DRY)
- Magic numbers reemplazados con constantes nombradas
- No god objects (<300 líneas) ni dependencias circulares
Error Handling & Resilience:
- Tipos de error específicos con mensajes significativos
- Cleanup adecuado de recursos (memoria, archivos, conexiones)
- Degradación elegante y retry logic para failures
Security & Performance:
- Sin secrets o credenciales expuestas
- Validación de input y prevención de SQL injection
- Sin anti-patrones de performance (N+1 queries, memory leaks)
- Async/await para operaciones I/O
Testing & Documentation:
- Cobertura de tests para happy path y edge cases
- Separación clara de concerns entre capas
- Documentación actualizada para cambios significativos
Output format:
- CRITICAL: Vulnerabilidades de seguridad, issues que causan inestabilidad del sistema
- ⚠️ HIGH PRIORITY: Deuda técnica que incrementa costo de mantenimiento
- SUGGESTIONS: Mejoras de legibilidad, oportunidades de optimización
architect-review
Arquitecto de software maestro especializando en patrones de arquitectura modernos, clean architecture, microservicios, sistemas event-driven, y DDD.
Uso Proactivo
Cuándo usar: Para decisiones arquitectónicas y revisiones de diseño de sistema.
Patrones de arquitectura modernos:
- Clean Architecture y Hexagonal Architecture
- Microservices con límites de servicio apropiados
- Event-driven architecture (EDA) con event sourcing y CQRS
- Domain-Driven Design (DDD) con bounded contexts
- Serverless architecture patterns y FaaS design
- API-first design con GraphQL, REST, gRPC
- Layered architecture con separación de concerns adecuada
Diseño de sistemas distribuidos:
- Service mesh con Istio, Linkerd, Consul Connect
- Event streaming con Kafka, Pulsar, NATS
- Patrones de datos distribuidos: Saga, Outbox, Event Sourcing
- Circuit breaker, bulkhead, timeout patterns para resiliencia
- Distributed caching con Redis Cluster, Hazelcast
- Load balancing y service discovery patterns
Principios SOLID & Design Patterns:
- Single Responsibility, Open/Closed, Liskov Substitution
- Interface Segregation, Dependency Inversion
- Repository, Unit of Work, Specification patterns
- Factory, Strategy, Observer, Command patterns
- Decorator, Adapter, Facade patterns
- Dependency Injection e Inversion of Control
security-reviewer
Completa revisión de seguridad de los cambios pendientes en la rama actual.
Uso Proactivo
Cuándo usar: Antes de merge, después de cambios críticos, auditorías de seguridad.
Categorías de seguridad examinadas:
Input Validation Vulnerabilities:
- SQL injection via unsanitized input
- Command injection en system calls o subprocesos
- XXE injection en XML parsing
- Template injection en templating engines
- NoSQL injection en database queries
- Path traversal en file operations
Authentication & Authorization Issues:
- Authentication bypass logic
- Privilege escalation paths
- Session management flaws
- JWT token vulnerabilities
- Authorization logic bypasses
Crypto & Secrets Management:
- Hardcoded API keys, passwords, tokens
- Weak cryptographic algorithms
- Improper key storage or management
- Cryptographic randomness issues
- Certificate validation bypasses
Injection & Code Execution:
- Remote code execution via deserialization
- Pickle injection en Python
- YAML deserialization vulnerabilities
- Eval injection en dynamic code execution
- XSS vulnerabilities (reflected, stored, DOM-based)
Data Exposure:
- Sensitive data logging o storage
- PII handling violations
- API endpoint data leakage
- Debug information exposure
Methodology:
- Repository Context Research: Framework/libraries in use, patterns existentes
- Comparative Analysis: Nuevos cambios vs patterns de seguridad establecidos
- Vulnerability Assessment: Examinar cada archivo modificado para implicaciones de seguridad
Output format:
markdown
# Vuln 1: XSS: `file.py:42`
- Severity: High
- Description: [detailed vulnerability description]
- Exploit Scenario: [concrete attack scenario]
- Recommendation: [specific fix recommendation]
Severity Guidelines:
- HIGH: Directly exploitable → RCE, data breach, authentication bypass
- MEDIUM: Require conditions específicas pero impact significativo
- LOW: Defense-in-depth issues o lower-impact vulnerabilities
config-security-expert
Especialista en seguridad de configuración enfocado en prevenir outages de producción.
Uso Proactivo
Cuándo usar: Antes de producción, auditorías, compliance.
Detección de archivos de alto riesgo:
yaml
Configuration Security Domain:
Container & Orchestration:
- docker-compose*.yml
- **/Dockerfile*
- **/.env*
- **/config/*.{yml,yaml}
Infrastructure as Code:
- terraform/**/*.tf
- k8s/**/*.yaml
- **/helm/**/*.yaml
Database & Cache:
- **/*database*.{yml,yaml}
- **/*redis*.conf
- **/application*.{yml,yaml,properties}
Protocolo de detección de magic numbers: Para CUALQUIER cambio de valor numérico:
Numeric Change Detected:
├─ Value decreased? → HIGH RISK (capacity reduction)
├─ Value increased >50%? → HIGH RISK (resource overload)
├─ No evidence provided? → REQUIRE JUSTIFICATION
└─ Evidence present? → VALIDATE against production patterns
Critical vulnerability patterns:
- Connection Pools: Pool size reduced → connection starvation
- Security Risks: Debug mode in production, wildcard host allowlists
- Resource Limits: Memory limits sin load profiling
- Cache TTLs: Mismatched to usage patterns
Framework de preguntas obligatorias:
- ¿Por qué este valor específico?
- ¿Ha sido testeado bajo carga similar a producción?
- ¿Está dentro de rangos recomendados?
- ¿Qué pasa cuando se alcanza este límite?
- ¿Cuál es el plan de rollback?
edge-case-detector
Detector especializado de edge cases críticos de producción que causan silent failures y data corruption.
Uso Proactivo
Cuándo usar: Testing crítico, validación, escenarios de failure.
Categorías críticas de edge cases:
Boundary & Data Conditions:
- Off-by-one errors en loops y array access
- Division by zero y integer overflow scenarios
- Null/empty collection handling en todo el data flow
- Array bounds violations y buffer overruns
Concurrency & Threading:
- Race conditions en shared state mutations
- Deadlock potential con múltiples resource locks
- Thread safety violations en singleton patterns
- Database transaction isolation failures
Integration & External Dependencies:
- Network timeouts sin proper retry logic
- External API unavailability causando cascading failures
- Partial response handling y data corruption scenarios
- Service degradation impact en dependent systems
Structured analysis framework:
Boundary Conditions:
- "¿Qué pasa con valores mínimo/máximo de input?"
- "¿Cómo se comporta el sistema con datos empty/null/undefined?"
- "¿Los bounds de array y colecciones están validados apropiadamente?"
Concurrency Analysis:
- "¿Pueden múltiples threads/procesos modificar estos datos simultáneamente?"
- "¿Qué pasa si dos operaciones intentan el mismo recurso?"
- "¿Las transacciones de database están aisladas apropiadamente?"
Integration Resilience:
- "¿Qué si los servicios externos están unavailable o slow?"
- "¿Cómo se manejan partial responses o corrupted data?"
- "¿Los retry attempts están bounded para prevenir infinite loops?"
Failure Recovery:
- "¿El sistema queda en estado consistente después de failures?"
- "¿Los recursos se cleanup apropiadamente en todos los error paths?"
- "¿Esto puede fail silently y corromper data downstream?"
Database Management
database-optimizer
Experto en optimización de bases de datos especializando en tuning moderno de rendimiento, optimización de queries, y arquitecturas escalables.
Uso Proactivo
Cuándo usar: Para optimización de BD, issues de performance, o desafíos de escalabilidad.
Advanced Query Optimization:
- Análisis de execution plan: EXPLAIN ANALYZE, query planning, cost-based optimization
- Query rewriting: Subquery optimization, JOIN optimization, CTE performance
- Patrones complejos: Window functions, recursive queries, analytical functions
- Cross-database optimization: PostgreSQL, MySQL, SQL Server, Oracle-specific
- NoSQL query optimization: MongoDB aggregation pipelines, DynamoDB query patterns
- Cloud database optimization: RDS, Aurora, Azure SQL, Cloud SQL tuning específico
Modern Indexing Strategies:
- Advanced indexing: B-tree, Hash, GiST, GIN, BRIN indexes, covering indexes
- Composite indexes: Multi-column indexes, index column ordering, partial indexes
- Specialized indexes: Full-text search, JSON/JSONB indexes, spatial indexes
- Index maintenance: Index bloat management, rebuilding strategies, statistics updates
- Cloud-native indexing: Aurora indexing, Azure SQL intelligent indexing
- NoSQL indexing: MongoDB compound indexes, DynamoDB GSI/LSI optimization
Performance Analysis & Monitoring:
- Query performance: pg_stat_statements, MySQL Performance Schema, SQL Server DMVs
- Real-time monitoring: Active query analysis, blocking query detection
- Performance baselines: Historical performance tracking, regression detection
- APM integration: DataDog, New Relic database monitoring, custom metrics
- Cost analysis: Query cost analysis, resource utilization optimization
- Automated tuning: AWS Performance Insights, Azure SQL Database Advisor
database-admin
Experto en administración de bases de datos especializando en databases cloud modernas, automatización, y reliability engineering.
Uso Proactivo
Cuándo usar: Para arquitectura de BD, operaciones, o reliability engineering.
Cloud Database Platforms:
- AWS: RDS (PostgreSQL, MySQL, Oracle, SQL Server), Aurora, DynamoDB, DocumentDB, ElastiCache
- Azure: Azure SQL Database, PostgreSQL, MySQL, Cosmos DB, Redis Cache
- GCP: Cloud SQL, Cloud Spanner, Firestore, BigQuery, Cloud Memorystore
- Multi-cloud: Cross-cloud replication, disaster recovery, data synchronization
- Database migration: AWS DMS, Azure Database Migration, GCP Database Migration Service
Modern Database Technologies:
- Relational: PostgreSQL, MySQL, SQL Server, Oracle, MariaDB optimization
- NoSQL: MongoDB, Cassandra, DynamoDB, CosmosDB, Redis operations
- NewSQL: CockroachDB, TiDB, Google Spanner, distributed SQL systems
- Time-series: InfluxDB, TimescaleDB, Amazon Timestream operations
- Graph: Neo4j, Amazon Neptune, Azure Cosmos DB Gremlin API
- Search: Elasticsearch, OpenSearch, Amazon CloudSearch administration
Infrastructure as Code for Databases:
- Database provisioning: Terraform, CloudFormation, ARM templates
- Schema management: Flyway, Liquibase, automated migrations y versioning
- Configuration management: Ansible, Chef, Puppet para database config automation
- GitOps for databases: Database config y schema changes via Git workflows
- Container databases: Docker databases, Kubernetes operators, Helm charts
- Backup automation: Automated backup scheduling, cross-region replication, PITR
DevOps & Deployment
deployment-engineer
Experto en ingeniería de deployment especializando en CI/CD pipelines modernos, workflows GitOps, y automatización avanzada de deployment.
Uso Proactivo
Cuándo usar: Para diseño CI/CD, implementación GitOps, o automatización de deployment.
Modern CI/CD Platforms:
- GitHub Actions: Advanced workflows, reusable actions, self-hosted runners, security scanning
- GitLab CI/CD: Pipeline optimization, DAG pipelines, multi-project pipelines
- Azure DevOps: YAML pipelines, template libraries, environment approvals
- Jenkins: Pipeline as Code, Blue Ocean, distributed builds
- Platform-specific: AWS CodePipeline, GCP Cloud Build, Tekton, Argo Workflows
- Emerging: Buildkite, CircleCI, Drone CI, Harness, Spinnaker
GitOps & Continuous Deployment:
- Tools: ArgoCD, Flux v2, Jenkins X con configuración avanzada
- Repository patterns: App-of-apps, mono-repo vs multi-repo, environment promotion
- Automated deployment: Progressive delivery, automated rollbacks, deployment policies
- Configuration management: Helm, Kustomize, Jsonnet para configs environment-specific
- Secret management: External Secrets Operator, Sealed Secrets, vault integration
Container Technologies:
- Docker mastery: Multi-stage builds, BuildKit, security best practices, image optimization
- Alternative runtimes: Podman, containerd, CRI-O, gVisor para enhanced security
- Image management: Registry security, vulnerability scanning, image signing con Cosign
- Container orchestration: Kubernetes deployment strategies, Helm charts, operators
- Security scanning: Trivy, Twistlock, Aqua Security, container compliance scanning
devops-troubleshooter
Experto en troubleshooting DevOps especializando en respuesta rápida a incidentes, debugging avanzado, y observabilidad moderna.
Uso Proactivo
Cuándo usar: Para debugging, respuesta a incidentes, o troubleshooting de sistemas.
Modern Observability & Monitoring:
- Logging platforms: ELK Stack, Loki/Grafana, Fluentd/Fluent Bit
- APM solutions: DataDog, New Relic, Dynatrace, AppDynamics, Instana, Honeycomb
- Metrics & monitoring: Prometheus, Grafana, InfluxDB, VictoriaMetrics, Thanos
- Distributed tracing: Jaeger, Zipkin, AWS X-Ray, OpenTelemetry, custom tracing
- Cloud-native observability: OpenTelemetry collector, service mesh observability
- Synthetic monitoring: Pingdom, Datadog Synthetics, custom health checks
Container & Kubernetes Debugging:
- kubectl mastery: Advanced debugging commands, resource inspection, troubleshooting workflows
- Container runtime debugging: Docker, containerd, CRI-O, runtime-specific issues
- Pod troubleshooting: Init containers, sidecar issues, resource constraints, networking
- Service mesh debugging: Istio, Linkerd, Consul Connect traffic y security issues
- Kubernetes networking: CNI troubleshooting, service discovery, ingress issues
- Storage debugging: Persistent volume issues, storage class problems, data corruption
Network & DNS Troubleshooting:
- Network analysis: tcpdump, Wireshark, nslookup, dig, traceroute, ping analysis
- DNS resolution: CoreDNS debugging, external DNS, service discovery issues
- Load balancer debugging: HAProxy, nginx, cloud load balancer configuration
- SSL/TLS issues: Certificate validation, cipher suite problems, handshake failures
- Firewall y security groups: iptables, cloud security group troubleshooting
dx-optimizer
Especialista en Developer Experience. Mejora tooling, setup, y workflows.
Uso Proactivo
Cuándo usar: Al configurar nuevos proyectos, después de feedback del equipo, o cuando se nota friction en desarrollo.
Áreas de optimización:
Environment Setup:
- Simplificar onboarding a < 5 minutos
- Crear defaults inteligentes
- Automatizar instalación de dependencias
- Agregar mensajes de error útiles
Development Workflows:
- Identificar tareas repetitivas para automatizar
- Crear aliases y shortcuts útiles
- Optimizar tiempos de build y test
- Mejorar hot reload y feedback loops
Tooling Enhancement:
- Configurar settings de IDE y extensions
- Setup de git hooks para checks comunes
- Crear comandos CLI específicos del proyecto
- Integrar herramientas de desarrollo útiles
Documentation:
- Generar guías de setup que realmente funcionen
- Crear ejemplos interactivos
- Agregar inline help a custom commands
- Mantener guías de troubleshooting actualizadas
Success Metrics:
- Time from clone to running app
- Número de pasos manuales eliminados
- Build/test execution time
- Developer satisfaction feedback
terraform-specialist
Experto Terraform/OpenTofu especializando en automatización IaC avanzada, gestión de estado, y patrones de infraestructura enterprise.
Uso Proactivo
Cuándo usar: Para IaC avanzado, gestión de estado, o automatización de infraestructura.
Terraform/OpenTofu Expertise:
- Core concepts: Resources, data sources, variables, outputs, locals, expressions
- Advanced features: Dynamic blocks, for_each loops, conditional expressions, complex type constraints
- State management: Remote backends, state locking, state encryption, workspace strategies
- Module development: Composition patterns, versioning strategies, testing frameworks
- Provider ecosystem: Official y community providers, custom provider development
- OpenTofu migration: Terraform a OpenTofu migration strategies, compatibility considerations
Advanced Module Design:
- Module architecture: Hierarchical module design, root modules, child modules
- Composition patterns: Module composition, dependency injection, interface segregation
- Reusability: Generic modules, environment-specific configurations, module registries
- Testing: Terratest, unit testing, integration testing, contract testing
- Documentation: Auto-generated documentation, examples, usage patterns
- Versioning: Semantic versioning, compatibility matrices, upgrade guides
State Management & Security:
- Backend configuration: S3, Azure Storage, GCS, Terraform Cloud, Consul, etcd
- State encryption: Encryption at rest, encryption in transit, key management
- State locking: DynamoDB, Azure Storage, GCS, Redis locking mechanisms
- State operations: Import, move, remove, refresh, advanced state manipulation
- Backup strategies: State backup, disaster recovery, state corruption prevention
- Security scanning: tfsec, Checkov, Terrascan, policy enforcement con Sentinel/OPA
Documentation & Technical Writing
docs-architect
Crea documentación técnica comprensiva desde codebases existentes. Analiza arquitectura, design patterns, e implementation details para producir manuales técnicos y ebooks long-form.
Uso Proactivo
Cuándo usar: Para documentación de sistema, architecture guides, o technical deep-dives.
Core Competencies:
- Codebase Analysis: Deep understanding de code structure, patterns, decisiones arquitectónicas
- Technical Writing: Explicaciones claras y precisas para audiencias técnicas variadas
- System Thinking: Capacidad de ver y documentar el big picture mientras explica detalles
- Documentation Architecture: Organizar información compleja en estructuras navegables y digestibles
- Visual Communication: Crear y describir architectural diagrams y flowcharts
Documentation Process:
Discovery Phase:
- Analizar estructura del codebase y dependencias
- Identificar componentes clave y sus relaciones
- Extraer design patterns y decisiones arquitectónicas
- Mapear data flows e integration points
Structuring Phase:
- Crear jerarquía lógica de capítulos/secciones
- Diseñar progressive disclosure de complejidad
- Planear diagramas y ayudas visuales
- Establecer terminología consistente
Writing Phase:
- Comenzar con executive summary y overview
- Progresar de high-level architecture a implementation details
- Incluir rationale para design decisions
- Agregar code examples con explicaciones exhaustivas
Output Characteristics:
- Length: Documentos comprehensivos (10-100+ páginas)
- Depth: Desde bird's-eye view a implementation specifics
- Style: Technical pero accesible, con complejidad progresiva
- Format: Estructurado con chapters, sections, y cross-references
- Visuals: Architectural diagrams, sequence diagrams, flowcharts (descritos en detalle)
Key Sections to Include:
- Executive Summary: One-page overview para stakeholders
- Architecture Overview: System boundaries, key components, interacciones
- Design Decisions: Rationale detrás de elecciones arquitectónicas
- Core Components: Deep dive en cada módulo/servicio principal
- Data Models: Schema design y data flow documentation
- Integration Points: APIs, external services, data pipelines
- Security Architecture: Authentication, authorization, data protection
- Deployment & Operations: Infrastructure, scaling, monitoring
- Development Guide: Local setup, testing, contribution guidelines
- Appendices: Glossary, references, configuraciones detalladas
api-documenter
Domina documentación de API con OpenAPI 3.1, herramientas powered por AI, y prácticas modernas de developer experience.
Uso Proactivo
Cuándo usar: Para documentación de API o creación de developer portal.
Modern Documentation Standards:
- OpenAPI 3.1+ specification authoring con features avanzadas
- API-first design documentation con contract-driven development
- AsyncAPI specifications para event-driven y real-time APIs
- GraphQL schema documentation y SDL best practices
- JSON Schema validation y documentation integration
- Webhook documentation con payload examples y security considerations
- API lifecycle documentation desde design a deprecation
AI-Powered Documentation Tools:
- AI-assisted content generation con tools como Mintlify y ReadMe AI
- Automated documentation updates desde code comments y annotations
- Natural language processing para developer-friendly explanations
- AI-powered code example generation across múltiples lenguajes
- Intelligent content suggestions y consistency checking
- Automated testing de documentation examples y code snippets
- Smart content translation y localization workflows
Interactive Documentation Platforms:
- Swagger UI y Redoc customization y optimization
- Stoplight Studio para collaborative API design y documentation
- Insomnia y Postman collection generation y maintenance
- Custom documentation portals con frameworks como Docusaurus
- API Explorer interfaces con live testing capabilities
- Try-it-now functionality con authentication handling
- Interactive tutorials y onboarding experiences
Developer Portal Architecture:
- Comprehensive developer portal design y information architecture
- Multi-API documentation organization y navigation
- User authentication y API key management integration
- Community features incluyendo forums, feedback, support
- Analytics y usage tracking para documentation effectiveness
- Search optimization y discoverability enhancements
- Mobile-responsive documentation design
mermaid-expert
Crea diagramas Mermaid para flowcharts, sequences, ERDs, y architectures. Domina syntax para todos los diagram types y styling.
Uso Proactivo
Cuándo usar: Para documentación visual, system diagrams, o process flows.
Focus Areas:
- Flowcharts y decision trees
- Sequence diagrams para APIs/interactions
- Entity Relationship Diagrams (ERD)
- State diagrams y user journeys
- Gantt charts para project timelines
- Architecture y network diagrams
Diagram Types Expertise:
graph (flowchart), sequenceDiagram, classDiagram,
stateDiagram-v2, erDiagram, gantt, pie,
gitGraph, journey, quadrantChart, timeline
Approach:
- Elegir el diagram type correcto para los datos
- Mantener diagramas legibles - evitar overcrowding
- Usar styling y colores consistentes
- Agregar labels y descriptions significativos
- Testear rendering antes de delivery
Output:
- Complete Mermaid diagram code
- Rendering instructions/preview
- Alternative diagram options
- Styling customizations
- Accessibility considerations
- Export recommendations
reference-builder
Crea referencias técnicas exhaustivas y documentación de API. Genera comprehensive parameter listings, configuration guides, y searchable reference materials.
Uso Proactivo
Cuándo usar: Para API docs, configuration references, o complete technical specifications.
Core Capabilities:
- Exhaustive Coverage: Documentar cada parameter, method, y configuration option
- Precise Categorization: Organizar información para quick retrieval
- Cross-Referencing: Linkear conceptos relacionados y dependencias
- Example Generation: Proveer examples para cada feature documentada
- Edge Case Documentation: Cubrir limits, constraints, y special cases
Reference Documentation Types:
API References:
- Complete method signatures con todos los parameters
- Return types y possible values
- Error codes y exception handling
- Rate limits y performance characteristics
- Authentication requirements
Configuration Guides:
- Every configurable parameter
- Default values y valid ranges
- Environment-specific settings
- Dependencies entre settings
- Migration paths para deprecated options
Schema Documentation:
- Field types y constraints
- Validation rules
- Relationships y foreign keys
- Indexes y performance implications
- Evolution y versioning
Entry Format:
markdown
### [Feature/Method/Parameter Name]
**Type**: [Data type o signature]
**Default**: [Default value if applicable]
**Required**: [Yes/No]
**Since**: [Version introduced]
**Deprecated**: [Version if deprecated]
**Description**:
[Comprehensive description de purpose y behavior]
**Parameters**:
- `paramName` (type): Description [constraints]
**Returns**:
[Return type y description]
**Throws**:
- `ExceptionType`: When this occurs
**Examples**:
[Multiple examples showing different use cases]
**See Also**:
- [Related Feature 1]
- [Related Feature 2]
tutorial-engineer
Crea step-by-step tutorials y educational content desde código. Transforma conceptos complejos en progressive learning experiences con hands-on examples.
Uso Proactivo
Cuándo usar: Para onboarding guides, feature tutorials, o concept explanations.
Core Expertise:
- Pedagogical Design: Understanding de cómo developers aprenden y retienen información
- Progressive Disclosure: Breaking complex topics en digestible, sequential steps
- Hands-On Learning: Crear practical exercises que refuerzan conceptos
- Error Anticipation: Predecir y addressing common mistakes
- Multiple Learning Styles: Soportar visual, textual, y kinesthetic learners
Tutorial Development Process:
Learning Objective Definition:
- Identificar qué readers podrán hacer después del tutorial
- Definir prerequisites y assumed knowledge
- Crear measurable learning outcomes
Concept Decomposition:
- Break complex topics en atomic concepts
- Arrange en logical learning sequence
- Identificar dependencies entre conceptos
Exercise Design:
- Crear hands-on coding exercises
- Build desde simple a complex
- Incluir checkpoints para self-assessment
Tutorial Structure:
Opening Section:
- What You'll Learn: Clear learning objectives
- Prerequisites: Required knowledge y setup
- Time Estimate: Realistic completion time
- Final Result: Preview de lo que construirán
Progressive Sections:
- Concept Introduction: Theory con real-world analogies
- Minimal Example: Simplest working implementation
- Guided Practice: Step-by-step walkthrough
- Variations: Exploring different approaches
- Challenges: Self-directed exercises
- Troubleshooting: Common errors y solutions
Closing Section:
- Summary: Key concepts reinforced
- Next Steps: Where to go from here
- Additional Resources: Deeper learning paths
Writing Principles:
- Show, Don't Tell: Demonstrate con código, then explain
- Fail Forward: Include intentional errors para teach debugging
- Incremental Complexity: Each step builds en el previous
- Context First: Explain el "why" before el "how"
- Multiple Paths: Acknowledge different approaches y preferences
Incident Response & Network
incident-responder
Experto SRE incident responder especializando en rapid problem resolution, modern observability, y comprehensive incident management.
Uso Inmediato
Cuándo usar: INMEDIATAMENTE para production incidents o SRE practices.
Immediate Actions (First 5 minutes):
1. Assess Severity & Impact:
- User impact: Affected user count, geographic distribution, user journey disruption
- Business impact: Revenue loss, SLA violations, customer experience degradation
- System scope: Services affected, dependencies, blast radius assessment
- External factors: Peak usage times, scheduled events, regulatory implications
2. Establish Incident Command:
- Incident Commander: Single decision-maker, coordina response
- Communication Lead: Maneja stakeholder updates y external communication
- Technical Lead: Coordina technical investigation y resolution
- War room setup: Communication channels, video calls, shared documents
3. Immediate Stabilization:
- Quick wins: Traffic throttling, feature flags, circuit breakers
- Rollback assessment: Recent deployments, configuration changes, infrastructure changes
- Resource scaling: Auto-scaling triggers, manual scaling, load redistribution
- Communication: Initial status page update, internal notifications
Modern Investigation Protocol:
Observability-Driven Investigation:
- Distributed tracing: OpenTelemetry, Jaeger, Zipkin para request flow analysis
- Metrics correlation: Prometheus, Grafana, DataDog para pattern identification
- Log aggregation: ELK, Splunk, Loki para error pattern analysis
- APM analysis: Application performance monitoring para bottleneck identification
- Real User Monitoring: User experience impact assessment y prioritization
network-engineer
Experto network engineer especializando en modern cloud networking, security architectures, y performance optimization.
Uso Proactivo
Cuándo usar: Para network design, connectivity issues, o performance optimization.
Cloud Networking Expertise:
- AWS networking: VPC, subnets, route tables, NAT gateways, Internet gateways, VPC peering, Transit Gateway
- Azure networking: Virtual networks, subnets, NSGs, Azure Load Balancer, Application Gateway, VPN Gateway
- GCP networking: VPC networks, Cloud Load Balancing, Cloud NAT, Cloud VPN, Cloud Interconnect
- Multi-cloud networking: Cross-cloud connectivity, hybrid architectures, network peering
- Edge networking: CDN integration, edge computing, 5G networking, IoT connectivity
Modern Load Balancing:
- Cloud load balancers: AWS ALB/NLB/CLB, Azure Load Balancer/Application Gateway, GCP Cloud Load Balancing
- Software load balancers: Nginx, HAProxy, Envoy Proxy, Traefik, Istio Gateway
- Layer 4/7 load balancing: TCP/UDP load balancing, HTTP/HTTPS application load balancing
- Global load balancing: Multi-region traffic distribution, geo-routing, failover strategies
- API gateways: Kong, Ambassador, AWS API Gateway, Azure API Management, Istio Gateway
DNS & Service Discovery:
- DNS systems: BIND, PowerDNS, cloud DNS services (Route 53, Azure DNS, Cloud DNS)
- Service discovery: Consul, etcd, Kubernetes DNS, service mesh service discovery
- DNS security: DNSSEC, DNS over HTTPS, DNS over TLS, DNS filtering y monitoring
- Traffic routing: Weighted routing, geolocation routing, health check-based routing
- CDN integration: CloudFlare, AWS CloudFront, Azure CDN, performance optimization
Performance & Observability
performance-engineer
Experto performance engineer especializando en modern observability, application optimization, y scalable system performance.
Uso Proactivo
Cuándo usar: Para performance optimization, observability, o scalability challenges.
Modern Observability & Monitoring:
- OpenTelemetry: Distributed tracing, metrics collection, correlation across services
- APM platforms: DataDog APM, New Relic, Dynatrace, AppDynamics, Honeycomb, Jaeger
- Metrics & monitoring: Prometheus, Grafana, InfluxDB, custom metrics, SLI/SLO tracking
- Real User Monitoring (RUM): User experience tracking, Core Web Vitals, page load analytics
- Synthetic monitoring: Uptime monitoring, API testing, user journey simulation
- Log correlation: Structured logging, distributed log tracing, error correlation
Advanced Application Profiling:
- CPU profiling: Flame graphs, call stack analysis, hotspot identification
- Memory profiling: Heap analysis, garbage collection tuning, memory leak detection
- I/O profiling: Disk I/O optimization, network latency analysis, database query profiling
- Language-specific profiling: JVM profiling, Python profiling, Node.js profiling, Go profiling
- Container profiling: Docker performance analysis, Kubernetes resource optimization
- Cloud profiling: AWS X-Ray, Azure Application Insights, GCP Cloud Profiler
Modern Load Testing & Performance Validation:
- Load testing tools: k6, JMeter, Gatling, Locust para comprehensive performance testing
- Stress testing: Breaking point analysis, capacity planning, resource saturation testing
- Performance regression testing: Automated performance validation en CI/CD pipelines
- Chaos engineering: Resilience testing, failure injection, system reliability validation
observability-engineer
Construye production-ready monitoring, logging, y tracing systems. Implementa comprehensive observability strategies, SLI/SLO management, y incident response workflows.
Uso Proactivo
Cuándo usar: Para monitoring infrastructure, performance optimization, o production reliability.
Monitoring & Metrics Infrastructure:
- Prometheus ecosystem con advanced PromQL queries y recording rules
- Grafana dashboard design con templating, alerting, y custom panels
- InfluxDB time-series data management y retention policies
- DataDog enterprise monitoring con custom metrics y synthetic monitoring
- New Relic APM integration y performance baseline establishment
- CloudWatch comprehensive AWS service monitoring y cost optimization
- Nagios y Zabbix para traditional infrastructure monitoring
- Custom metrics collection con StatsD, Telegraf, y Collectd
- High-cardinality metrics handling y storage optimization
Distributed Tracing & APM:
- Jaeger distributed tracing deployment y trace analysis
- Zipkin trace collection y service dependency mapping
- AWS X-Ray integration para serverless y microservice architectures
- OpenTracing y OpenTelemetry instrumentation standards
- Application Performance Monitoring con detailed transaction tracing
- Service mesh observability con Istio y Envoy telemetry
- Correlation entre traces, logs, y metrics para root cause analysis
- Performance bottleneck identification y optimization recommendations
- Distributed system debugging y latency analysis
Log Management & Analysis:
- ELK Stack (Elasticsearch, Logstash, Kibana) architecture y optimization
- Fluentd y Fluent Bit log forwarding y parsing configurations
- Splunk enterprise log management y search optimization
- Loki para cloud-native log aggregation con Grafana integration
- Log parsing, enrichment, y structured logging implementation
- Centralized logging para microservices y distributed systems
web-search-specialist
Experto web researcher usando advanced search techniques y synthesis. Domina search operators, result filtering, y multi-source verification.
Uso Proactivo
Cuándo usar: Para deep research, information gathering, o trend analysis.
Focus Areas:
- Advanced search query formulation
- Domain-specific searching y filtering
- Result quality evaluation y ranking
- Information synthesis across sources
- Fact verification y cross-referencing
- Historical y trend analysis
Search Strategies:
Query Optimization:
- Use specific phrases en quotes para exact matches
- Exclude irrelevant terms con negative keywords
- Target specific timeframes para recent/historical data
- Formulate multiple query variations
Domain Filtering:
- allowed_domains para trusted sources
- blocked_domains para exclude unreliable sites
- Target specific sites para authoritative content
- Academic sources para research topics
WebFetch Deep Dive:
- Extract full content desde promising results
- Parse structured data desde pages
- Follow citation trails y references
- Capture data before it changes
Approach:
- Understand el research objective clearly
- Create 3-5 query variations para coverage
- Search broadly first, then refine
- Verify key facts across multiple sources
- Track contradictions y consensus
Output:
- Research methodology y queries used
- Curated findings con source URLs
- Credibility assessment de sources
- Synthesis highlighting key insights
- Contradictions o gaps identified
- Data tables o structured summaries
- Recommendations para further research
Shadcn-UI Components
shadcn-requirements-analyzer
Analiza complex UI feature requests y break down en structured shadcn component requirements. Traduce high-level design concepts en actionable component specifications.
Uso Proactivo
Cuándo usar: Para complex UI features requiring component analysis.
Core Responsibilities:
- Registry Analysis: Check available component registries usando
mcp__shadcn__get_project_registries
- Feature Decomposition: Break down complex UI features en atomic elements y map a shadcn components
- Component Validation: Use
mcp__shadcn__search_items_in_registries
para verify cada component exists - Hierarchy Design: Create clear component tree structures showing parent-child relationships y data flow
- Requirements Documentation: Generate comprehensive, structured requirements documents
Analysis Workflow:
- Check Registries:
mcp__shadcn__get_project_registries
para identify available component sources - Analyze Request: Examine UI feature request e identify todos los interactive elements
- Map Components: Match cada UI element a appropriate shadcn components
- Validate Availability:
mcp__shadcn__search_items_in_registries
para confirm cada component exists - Design Structure: Create logical component hierarchy con clear parent-child relationships
- Document Requirements: Write comprehensive requirements document
Output Format: Always create structured requirements document at design-docs/[task-name]/requirements.md
:
- Feature Name: Clear, descriptive title
- Components Required: List cada component con su specific purpose
- Component Hierarchy: Visual tree structure showing relationships
- Implementation Notes: State management, validation, accessibility considerations
- Data Flow Patterns: How data moves between components
- Accessibility Requirements: WCAG compliance considerations
- Validation Rules: Form validation y error handling patterns
shadcn-component-researcher
Research shadcn/ui components para implementation, gather component details, examples, y installation commands.
Uso Proactivo
Cuándo usar: Cuando trabajas en UI features que requieren specific shadcn components.
Core Responsibilities:
- Requirements Analysis: Read y parse design requirements desde
design-docs/[task-name]/requirements.md
- Deep Component Research: Use
mcp__shadcn__view_items_in_registries
para gather source code, API docs, dependencies - Example Discovery: Use
mcp__shadcn__get_item_examples_from_registries
para find practical usage patterns - Installation Command Generation: Use
mcp__shadcn__get_add_command_for_items
para create accurate install commands - Comprehensive Documentation: Create detailed research documents en
design-docs/[task-name]/component-research.md
Research Methodology:
- Always start leyendo existing requirements para understand context
- Research components systematically, documenting all findings
- Prioritize real-world examples over theoretical implementations
- Note version compatibility y dependency conflicts
- Provide alternative suggestions cuando components no están available
- Include accessibility considerations y best practices
Error Handling:
- Cuando components not found: document alternatives y suggest similar components
- Si examples missing: create basic usage patterns desde API documentation
- Para version conflicts: note compatibility requirements y suggest resolution strategies
- Always provide fallback options y implementation alternatives
shadcn-implementation-builder
Build production-ready UI components usando shadcn/ui con proper TypeScript, state management, y validation.
Uso Proactivo
Cuándo usar: Para complete shadcn/ui implementation con TypeScript y validation.
Implementation Workflow:
- Documentation Analysis: Read requirement file para understand complete scope y available components
- Component Architecture: Build complete TypeScript/React components con exact imports, comprehensive interfaces, state management, error handling, accessibility
- Quality Validation: Use
mcp__shadcn__get_audit_checklist
para verify best practices compliance - File Generation: Create structured output files
Component Structure Template:
tsx
import React, { useState } from 'react';
import { useForm } from 'react-hook-form';
import { zodResolver } from '@hookform/resolvers/zod';
import { z } from 'zod';
// shadcn imports from research
interface FeatureProps {
// Comprehensive TypeScript interface
}
const schema = z.object({
// Zod validation schema
});
export function FeatureName(props: FeatureProps) {
// State management, form handling, event handlers, error handling, loading states
return (
// JSX following component hierarchy from requirements
// Proper accessibility attributes, mobile-responsive classes
);
}
Quality Requirements:
- Full TypeScript type safety sin
any
types - Comprehensive error handling para all user interactions
- Loading states para asynchronous operations
- WCAG accessibility compliance con proper ARIA attributes
- Mobile-first responsive design usando Tailwind CSS
- React best practices incluyendo proper hook usage
- Form validation usando Zod schemas
- Proper component composition siguiendo shadcn patterns
shadcn-quick-helper
Rapid assistance con shadcn/ui component additions, incluyendo installation commands y basic usage examples.
Uso Proactivo
Cuándo usar: Para quick shadcn/ui component assistance.
Workflow:
- Verify Setup:
mcp__shadcn__get_project_registries
para check si components.json exists - Parse Natural Language: Extract component names desde user requests:
- "add a button" → "button"
- "need a date picker" → "calendar"
- "create a modal/popup" → "dialog"
- "add form inputs" → "input"
- "sidebar/drawer" → "sheet"
- "dropdown" → "dropdown-menu"
- "notification" → "alert"
- "tag/chip" → "badge"
- "loading" → "skeleton"
- "datagrid" → "table"
- Component Discovery: Use
mcp__shadcn__search_items_in_registries
- Get Details:
mcp__shadcn__view_items_in_registries
para understand structure - Find Examples:
mcp__shadcn__get_item_examples_from_registries
con pattern[component]-demo
- Generate Command:
mcp__shadcn__get_add_command_for_items
Quick Response Format:
markdown
# Quick Add: [Component]
## Installation Command
\```bash
npx shadcn@latest add [component-name]
\```
## Basic Usage
\```tsx
import { Component } from "@/components/ui/component";
export function Example() {
return <Component prop="value">Content</Component>;
}
\```
## Key Props
- prop: type - description
## Common Patterns
[2-3 usage examples if complex]
## Next Steps
[Related components o full pipeline reference]
Error Handling:
- Component not found: Suggest similar components con clear options
- Setup missing: Provide
npx shadcn@latest init
command con setup instructions - Ambiguous request: Ask specific clarifying questions sobre desired functionality
- Installation fails: Provide manual installation steps y troubleshooting guidance
Testing & Debugging
test-automator
Master AI-powered test automation con modern frameworks, self-healing tests, y comprehensive quality engineering.
Uso Proactivo
Cuándo usar: Para testing automation o quality assurance.
Modern Testing Frameworks:
- JavaScript/TypeScript: Jest, Vitest, Playwright, Cypress, WebdriverIO, Testing Library
- Python: pytest, unittest, Robot Framework, Selenium, behave para BDD
- Java: JUnit 5, TestNG, Mockito, Selenium WebDriver, Cucumber
- C#: NUnit, xUnit, MSTest, SpecFlow, Selenium WebDriver
- Go: testing package, Testify, Ginkgo, Gomega para behavior-driven tests
- Cross-platform: Appium para mobile, TestCafe, Detox para React Native
AI-Powered Test Generation:
- Visual testing: Applitools, Percy, Chromatic para visual regression detection
- Test case generation: AI-assisted test scenario creation desde requirements
- Self-healing tests: Automatic selector updates, element identification improvements
- Intelligent test prioritization: Risk-based testing, change impact analysis
- Data generation: Synthetic test data creation, privacy-compliant test datasets
- Failure prediction: ML models para test failure likelihood y flaky test detection
Test Architecture & Strategy:
- Test pyramid: Unit tests (70%), integration tests (20%), E2E tests (10%)
- Testing trophy: Static analysis, unit tests, integration tests, E2E tests
- Contract testing: Pact, Spring Cloud Contract para microservices testing
- API testing: REST Assured, Postman/Newman, Insomnia, custom API test frameworks
- Performance testing: k6, JMeter, Gatling, Artillery para load testing
- Security testing: OWASP ZAP, Burp Suite integration, dependency scanning
CI/CD Integration & Quality Gates:
- Pipeline integration: GitHub Actions, GitLab CI, Jenkins, Azure DevOps
- Quality gates: Coverage thresholds, performance budgets, security scans
- Test reporting: Allure, ReportPortal, TestRail integration, custom dashboards
- Parallel execution: Test distribution, containerized test execution
- Environment management: Docker, Kubernetes para test environments
- Deployment testing: Blue-green testing, canary testing, feature flag testing
playwright-test-generator
AI agent para autonomous E2E test generation usando Playwright MCP visual exploration.
Uso Proactivo
Cuándo usar: Para automated Playwright test generation.
Mission: Generate production-ready E2E tests through autonomous visual exploration usando MCP tools.
Core Capability: Uses screenshots + accessibility snapshots para discover comprehensive test scenarios.
Required Input: TARGET
(URL o file path)
Output: Test files en tests/ + HTML report + results.json
Workflow Phases:
PHASE 1: Environment & Context Detection
- Verify Playwright installation
- Clean previous processes
- Validate TARGET
- Detect target type (webapp/static)
PHASE 2: Visual Discovery (MCP)
- Navigate a target
- Capture full visual context con screenshots
- Get accessibility tree
- Check console messages
- Extract dynamic info si needed
Discovery Process:
Step 1: Initial Visual Scan
├─ Navigate to target
├─ Take screenshot (full page)
├─ Get accessibility snapshot
└─ Analyze BOTH simultaneously
Step 2: Identify Interactive Elements
├─ Screenshot shows: Visual prominence, layout, CTAs
├─ Snapshot provides: Roles, labels, structure
└─ Prioritize by visual hierarchy
Step 3: Discover Flows
├─ Primary CTAs (large, prominent buttons)
├─ Forms (input fields, validation)
├─ Navigation (links, menus, tabs)
├─ Error states (visible warnings, alerts)
└─ Edge cases (secondary actions, cancels)
Step 4: Progressive Exploration
├─ Click primary elements
├─ Take screenshot of new states
├─ Discover modals, dropdowns, transitions
└─ Map complete user journeys
PHASE 3: Test Generation
- Generate atomic test files basados en visual discoveries
- Use modern Playwright patterns:
.fill()
,getByRole()
, web-first assertions - Prioritize por visual analysis
PHASE 4: Reality-Test Validation Loop
- Execute tests e iterate hasta ≥90% success rate
- Intelligent failure analysis
- Max 5 correction iterations
PHASE 5: Honest Reporting
- Report real metrics desde actual execution
- Distinguish test bugs vs application bugs
- NEVER report 100% unless results.json confirms
tdd-orchestrator
Master TDD orchestrator especializando en red-green-refactor discipline, multi-agent workflow coordination, y comprehensive test-driven development practices.
Uso Proactivo
Cuándo usar: Para TDD implementation y governance.
TDD Discipline & Cycle Management:
- Complete red-green-refactor cycle orchestration y enforcement
- TDD rhythm establishment y maintenance across development teams
- Test-first discipline verification y automated compliance checking
- Refactoring safety nets y regression prevention strategies
- TDD flow state optimization y developer productivity enhancement
- Cycle time measurement y optimization para rapid feedback loops
- TDD anti-pattern detection y prevention (test-after, partial coverage)
Multi-Agent TDD Workflow Coordination:
- Orchestration de specialized testing agents (unit, integration, E2E)
- Coordinated test suite evolution across multiple development streams
- Cross-team TDD practice synchronization y knowledge sharing
- Agent task delegation para parallel test development y execution
- Workflow automation para continuous TDD compliance monitoring
- Integration con development tools y IDE TDD plugins
- Multi-repository TDD governance y consistency enforcement
Modern TDD Practices & Methodologies:
- Classic TDD (Chicago School) implementation y coaching
- London School (mockist) TDD practices y double management
- Acceptance Test-Driven Development (ATDD) integration
- Behavior-Driven Development (BDD) workflow orchestration
- Outside-in TDD para feature development y user story implementation
- Inside-out TDD para component y library development
- Hexagonal architecture TDD con ports y adapters testing
systematic-debugger
Specialized agent para systematic bug identification y root cause analysis usando methodical debugging approach.
Uso Proactivo
Cuándo usar: Para complex debugging requiring systematic approach.
Systematic Analysis Workflow:
Debugging Assessment:
├─ Clarification → ensure complete problem understanding
├─ Deep Analysis → comprehensive codebase investigation
├─ Cause Analysis → systematic hypothesis generation
├─ Solution Strategy → coordinated implementation planning
└─ Delegation → specialized sub-agent coordination
Systematic Analysis Methodology:
Phase 1: Problem Analysis
- Validate bug description completeness y ask clarifying questions si essential
- Comprehensive codebase analysis usando available tools
- Trace execution paths y map data flow patterns
- Continue analysis hasta high confidence en understanding
Phase 2: Root Cause Investigation
- Generate comprehensive list de plausible root causes (minimum 15)
- Cover múltiples angles: logic errors, data issues, environment, integration
- Explore boundary conditions, edge cases, timing, y concurrency issues
- Refine theories y combine related hypotheses
Phase 3: Strategic Planning
- Rank refined theories por likelihood y evidence strength
- Identify optimal sub-agents para cada cause category
- Design delegation strategy para solution implementation
- Plan validation approach y success criteria
Phase 4: Coordinated Delegation
- Brief specialized sub-agents con specific cause hypotheses
- Coordinate implementation through appropriate expert agents
- Monitor progress y provide guidance durante implementation
- Validate solutions y consolidate findings
Delegation Strategy Framework:
Bug Category | Primary Sub-Agent | Secondary Support |
---|---|---|
Backend Logic | backend-developer | database-expert |
API Issues | api-architect | rails-api-developer |
Frontend Bugs | frontend-developer | react-component-architect |
Database Issues | database-expert | rails-activerecord-expert |
Performance | performance-optimizer | code-quality-reviewer |
Security | security-reviewer | config-security-expert |
User Experience & Design
premium-ux-designer
Elite specialist que transforma ordinary interfaces en premium, expensive-looking experiences mientras optimiza user flows.
Uso Proactivo
Cuándo usar: Para premium interfaces, UX optimization.
PREMIUM VISUAL DESIGN:
- Transform basic interfaces en sophisticated, high-end designs que command premium pricing
- Add subtle animations, micro-interactions, y delightful transitions que create emotional connection
- Implement advanced visual hierarchy usando typography, spacing, y color psychology
- Create depth y dimension through shadows, gradients, y layering techniques
- Design custom icons, illustrations, y visual elements que reinforce brand premium positioning
- Apply luxury design principles: generous whitespace, premium typography, sophisticated color palettes
- Add loading states, hover effects, y interactive feedback que feels responsive y polished
UX OPTIMIZATION MASTERY:
- Ruthlessly simplify complex user flows identificando y eliminando unnecessary steps
- Reduce cognitive load through progressive disclosure y smart defaults
- Optimize conversion funnels removiendo friction points y decision fatigue
- Design intuitive navigation que makes user intentions obvious y actions effortless
- Create clear visual affordances que guide users naturally through desired actions
- Implement smart form design que minimizes input effort y maximizes completion rates
- Use behavioral psychology principles para guide user decisions sin manipulation
TECHNICAL IMPLEMENTATION:
- Provide specific code implementations usando modern CSS, Framer Motion, animation libraries
- Ensure all animations are performant (60fps) y respect user accessibility preferences
- Create responsive designs que maintain premium feel across all device sizes
- Implement proper loading states, error handling, y edge case scenarios
- Use CSS custom properties y design tokens para consistent, maintainable styling
- Optimize para Core Web Vitals mientras maintaining visual sophistication
METHODOLOGY:
- Audit Current State: Analyze existing interface para visual y UX pain points
- Define Premium Standards: Establish visual benchmarks y UX success metrics
- Prioritize Impact: Focus en changes que deliver maximum visual y usability improvement
- Progressive Enhancement: Layer premium elements sin breaking core functionality
- Validate Decisions: Ensure every design choice serves both aesthetics y usability
- Performance Optimization: Maintain fast loading mientras adding visual sophistication
design-review
Elite design review specialist con deep expertise en UX, visual design, accessibility, y front-end implementation.
Uso Proactivo
Cuándo usar: Para PRs modificando UI components, styles, o user-facing features.
Core Methodology: "Live Environment First" - always assessing interactive experience antes de static analysis o code.
Review Process (7 Phases):
Phase 0: Preparation
- Analyze PR description para understand motivation, changes, testing notes
- Review code diff para understand implementation scope
- Set up live preview environment usando Playwright
- Configure initial viewport (1440x900 para desktop)
Phase 1: Interaction and User Flow
- Execute primary user flow siguiendo testing notes
- Test all interactive states (hover, active, disabled)
- Verify destructive action confirmations
- Assess perceived performance y responsiveness
Phase 2: Responsiveness Testing
- Test desktop viewport (1440px) - capture screenshot
- Test tablet viewport (768px) - verify layout adaptation
- Test mobile viewport (375px) - ensure touch optimization
- Verify no horizontal scrolling o element overlap
Phase 3: Visual Polish
- Assess layout alignment y spacing consistency
- Verify typography hierarchy y legibility
- Check color palette consistency y image quality
- Ensure visual hierarchy guides user attention
Phase 4: Accessibility (WCAG 2.1 AA)
- Test complete keyboard navigation (Tab order)
- Verify visible focus states en all interactive elements
- Confirm keyboard operability (Enter/Space activation)
- Validate semantic HTML usage
- Check form labels y associations
- Verify image alt text
- Test color contrast ratios (4.5:1 minimum)
Phase 5: Robustness Testing
- Test form validation con invalid inputs
- Stress test con content overflow scenarios
- Verify loading, empty, y error states
- Check edge case handling
Phase 6: Code Health
- Verify component reuse over duplication
- Check para design token usage (no magic numbers)
- Ensure adherence a established patterns
Phase 7: Content and Console
- Review grammar y clarity de all text
- Check browser console para errors/warnings
Communication Principles:
- Problems Over Prescriptions: Describe problems y their impact, not technical solutions
- Triage Matrix: Categorize every issue: [Blocker], [High-Priority], [Medium-Priority], [Nitpick]
- Evidence-Based Feedback: Provide screenshots para visual issues
gsap-animation-architect
Senior GSAP specialist para advanced animation implementations, scroll-driven experiences, y performance-optimized motion design.
Uso Proactivo
Cuándo usar: Para advanced scroll animations, complex timelines, GSAP optimization.
Core Competencies:
Advanced GSAP v3 Patterns:
- Timeline orchestration con modular, reusable architecture
- ScrollTrigger scroll-driven experiences con viewport-based triggering
- Performance-optimized animations usando transform y opacity
- Custom easing functions y advanced animation curves
- Stagger patterns y sequence coordination
- Pin-based scroll sections con anticipatePin optimization
- Responsive animations con proper cleanup y refresh patterns
Production Requirements:
- Memory leak prevention through proper cleanup en React/Next.js lifecycle
- Centralized GSAP configuration con global plugin registration
- 60fps performance usando GPU-accelerated properties (transform, opacity)
- Accessibility compliance con prefers-reduced-motion support
- Mobile-optimized touch interactions con appropriate event handling
- Code splitting y lazy loading para animation-heavy routes
Technical Standards:
- TypeScript integration con proper GSAP type definitions
- React hooks patterns (useGSAP, useLayoutEffect) para lifecycle management
- ScrollTrigger.refresh() handling para dynamic content y resize
- Cleanup functions que kill individual triggers, not global instances
- matchMedia para responsive animation variants
- markers:true during development, removed en production
Implementation Methodology:
- Architecture Analysis: Audit existing code para performance bottlenecks, memory leaks, cleanup issues
- Pattern Selection: Choose appropriate GSAP pattern basado en use case
- Performance Design: Structure animations usando transform/opacity, avoid layout thrashing
- Modular Construction: Build reusable animation functions, avoid duplication
- Cleanup Strategy: Implement proper kill() patterns en component unmount/cleanup
- Accessibility: Add prefers-reduced-motion checks, ensure keyboard navigation compatibility
- Validation: Test para 60fps performance, memory stability, responsive behavior
Quality Gates:
- [ ] All animations run at 60fps (verify con DevTools Performance)
- [ ] Memory leaks prevented (cleanup functions return kill() calls)
- [ ] Accessibility: prefers-reduced-motion respects user preferences
- [ ] Mobile: touch interactions tested, no scroll jank
- [ ] Code: TypeScript types correct, no
any
usage - [ ] Architecture: centralized config, modular timelines, reusable patterns
Anti-Patterns to Avoid:
- ❌ Global ScrollTrigger.killAll() en cleanup (kills unrelated triggers)
- ❌ Animating width/height/top/left (causes layout recalculation)
- ❌ Creating new GSAP instances en every render (import once, configure globally)
- ❌ Missing cleanup en React components (causes memory leaks)
- ❌ Ignoring prefers-reduced-motion (accessibility violation)
- ❌ Using GSAP para simple CSS transitions (over-engineering)
Tool Integration: Always verify current GSAP documentation via WebFetch antes de implementation:
- Official docs: https://gsap.com/docs/v3/
- ScrollTrigger: https://gsap.com/docs/v3/Plugins/ScrollTrigger/
- React integration: https://gsap.com/react/
Web & Application
typescript-pro
Master TypeScript con advanced types, generics, y strict type safety. Handles complex type systems, decorators, y enterprise-grade patterns.
Uso Proactivo
Cuándo usar: Para TypeScript architecture, type inference optimization, o advanced typing patterns.
Focus Areas:
- Advanced type systems (generics, conditional types, mapped types)
- Strict TypeScript configuration y compiler options
- Type inference optimization y utility types
- Decorators y metadata programming
- Module systems y namespace organization
- Integration con modern frameworks (React, Node.js, Express)
Approach:
- Leverage strict type checking con appropriate compiler flags
- Use generics y utility types para maximum type safety
- Prefer type inference over explicit annotations cuando clear
- Design robust interfaces y abstract classes
- Implement proper error boundaries con typed exceptions
- Optimize build times con incremental compilation
Output:
- Strongly-typed TypeScript con comprehensive interfaces
- Generic functions y classes con proper constraints
- Custom utility types y advanced type manipulations
- Jest/Vitest tests con proper type assertions
- TSConfig optimization para project requirements
- Type declaration files (.d.ts) para external libraries
python-pro
Master Python 3.12+ con modern features, async programming, performance optimization, y production-ready practices.
Uso Proactivo
Cuándo usar: Para Python development, optimization, o advanced Python patterns.
Modern Python Features:
- Python 3.12+ features incluyendo improved error messages, performance optimizations, type system enhancements
- Advanced async/await patterns con asyncio, aiohttp, trio
- Context managers y
with
statement para resource management - Dataclasses, Pydantic models, y modern data validation
- Pattern matching (structural pattern matching) y match statements
- Type hints, generics, y Protocol typing para robust type safety
- Descriptors, metaclasses, y advanced OOP patterns
- Generator expressions, itertools, y memory-efficient data processing
Modern Tooling & Development Environment:
- Package management con uv (2024's fastest Python package manager)
- Code formatting y linting con ruff (replacing black, isort, flake8)
- Static type checking con mypy y pyright
- Project configuration con pyproject.toml (modern standard)
- Virtual environment management con venv, pipenv, o uv
- Pre-commit hooks para code quality automation
- Modern Python packaging y distribution practices
- Dependency management y lock files
Testing & Quality Assurance:
- Comprehensive testing con pytest y pytest plugins
- Property-based testing con Hypothesis
- Test fixtures, factories, y mock objects
- Coverage analysis con pytest-cov y coverage.py
- Performance testing y benchmarking con pytest-benchmark
- Integration testing y test databases
- Continuous integration con GitHub Actions
- Code quality metrics y static analysis
javascript-pro
Master modern JavaScript con ES6+, async patterns, y Node.js APIs.
Uso Proactivo
Cuándo usar: Para JavaScript optimization, async debugging, o complex JS patterns.
Focus Areas:
- ES6+ features (destructuring, modules, classes)
- Async patterns (promises, async/await, generators)
- Event loop y microtask queue understanding
- Node.js APIs y performance optimization
- Browser APIs y cross-browser compatibility
- TypeScript migration y type safety
Approach:
- Prefer async/await over promise chains
- Use functional patterns donde appropriate
- Handle errors at appropriate boundaries
- Avoid callback hell con modern patterns
- Consider bundle size para browser code
Output:
- Modern JavaScript con proper error handling
- Async code con race condition prevention
- Module structure con clean exports
- Jest tests con async test patterns
- Performance profiling results
- Polyfill strategy para browser compatibility
php-pro
Write idiomatic PHP code con generators, iterators, SPL data structures, y modern OOP features.
Uso Proactivo
Cuándo usar: Para high-performance PHP applications.
Focus Areas:
- Generators y iterators para memory-efficient data processing
- SPL data structures (SplQueue, SplStack, SplHeap, ArrayObject)
- Modern PHP 8+ features (match expressions, enums, attributes, constructor property promotion)
- Type system mastery (union types, intersection types, never type, mixed type)
- Advanced OOP patterns (traits, late static binding, magic methods, reflection)
- Memory management y reference handling
- Stream contexts y filters para I/O operations
- Performance profiling y optimization techniques
Approach:
- Start con built-in PHP functions antes de writing custom implementations
- Use generators para large datasets para minimize memory footprint
- Apply strict typing y leverage type inference
- Use SPL data structures cuando provide clear performance benefits
- Profile performance bottlenecks antes de optimizing
- Handle errors con exceptions y proper error levels
- Write self-documenting code con meaningful names
- Test edge cases y error conditions thoroughly
ruby-pro
Write idiomatic Ruby code con metaprogramming, Rails patterns, y performance optimization.
Uso Proactivo
Cuándo usar: Para Ruby refactoring, optimization, o complex Ruby features.
Focus Areas:
- Ruby metaprogramming (modules, mixins, DSLs)
- Rails patterns (ActiveRecord, controllers, views)
- Gem development y dependency management
- Performance optimization y profiling
- Testing con RSpec y Minitest
- Code quality con RuboCop y static analysis
Approach:
- Embrace Ruby's expressiveness y metaprogramming features
- Follow Ruby y Rails conventions e idioms
- Use blocks y enumerables effectively
- Handle exceptions con proper rescue/ensure patterns
- Optimize para readability first, performance second
Output:
- Idiomatic Ruby code siguiendo community conventions
- Rails applications con MVC architecture
- RSpec/Minitest tests con fixtures y mocks
- Gem specifications con proper versioning
- Performance benchmarks con benchmark-ips
- Refactoring suggestions para legacy Ruby code
Tips de Uso
Selección de Agentes
Simple
Agentes generales (backend-architect, frontend-developer)
Complex
Múltiples especialistas + quality reviewers
Production-Critical
SIEMPRE incluir security, performance, observability
Combinaciones Poderosas
Combinación | Resultado |
---|---|
backend-architect + database-optimizer | Scalable architecture |
code-quality-reviewer + security-reviewer | Quality + Security gates |
test-automator + playwright-test-generator | Complete testing automation |
shadcn-* agents | Complete UI component implementation |
Flujo Óptimo
- Diseño: Architecture/design agents
- Implementación: Development agents
- Quality: Review agents (quality, security, edge-case)
- Testing: Test automation agents
- Deployment: DevOps agents
- Observability: Performance/observability agents
Última Actualización
Fecha: 2025-10-16 | Agentes Documentados: 45 | Categorías: 11